An international team of scientists has discovered that the last remaining stable portion of the Greenland ice sheet is stable no more.
The finding, which will likely boost estimates of expected global sea level rise in the future, appears in the March 16 issue of the journal Nature Climate
The new result focuses on ice loss due to a major retreat of an outlet glacier connected to a long “river” of ice – known as an ice stream – that drains ice from the interior of the ice sheet. The Zachariae ice stream retreated about 20 kilometers (12.4 miles) over the last decade, the researchers concluded. For comparison, one of the fastest moving glaciers, the Jakobshavn ice stream in southwest Greenland, has retreated 35 kilometers (21.7 miles) over the last 150 years.
Ice streams drain ice basins, the same way the Amazon River drains the very large Amazon water basin. Zachariae is the largest ice stream in a drainage basin that covers 16 percent of the Greenland ice sheet—an area twice as large as the one drained by Jakobshavn.
This paper represents the latest finding from GNET, the GPS network in Greenland that measures ice loss by weighing the ice sheet as it presses down on the bedrock.
“Northeast Greenland is very cold. It used to be considered the last stable part of the Greenland ice sheet,” explained GNET lead investigator Michael Bevis of The Ohio State University. “This study shows that ice loss in the northeast is now accelerating. So, now it seems that all of the margins of the Greenland ice sheet are unstable.”
Historically, Zachariae drained slowly, since it had to fight its way through a bay choked with floating ice debris. Now that the ice is retreating, the ice barrier in the bay is reduced, allowing the glacier to speed up—and draw down the ice mass from the entire basin.
“This suggests a possible positive feedback mechanism whereby retreat of the outlet glacier, in part due to warming of the air and in part due to glacier dynamics, leads to increased dynamic loss of ice upstream. This suggests that Greenland’s contribution to global sea level rise may be even higher in the future,” said Bevis, who is also the Ohio Eminent Scholar in Geodynamics and professor of earth sciences at Ohio State.
Study leader Shfaqat Abbas Khan, a senior researcher at the National Space Institute at the Technical University of Denmark, said that the finding is cause for concern.
“The fact that the mass loss of the Greenland Ice Sheet has generally increased over the last decades is well known,” Khan said, “but the increasing contribution from the north-eastern part of the ice sheet is new and very surprising.”
GNET, short for “Greenland GPS Network,” uses the earth’s natural elasticity to measure the mass of the ice sheet. As previous Ohio State studies revealed, ice weighs down bedrock, and when the ice melts away, the bedrock rises measurably in response. More than 50 GNET stations along Greenland’s coast weigh the ice sheet like a giant bathroom scale.
Khan and his colleagues combined GNET data with ice thickness measurements taken by four different satellites: the Airborne Topographic Mapper (ATM), the Ice, Cloud and Land Elevation Satellite (ICESat), and the Land, Vegetation and Ice Sensor (LVIS) from NASA; and the Environmental Satellite (ENVISAT) from the European Space Agency.
They found that the northeast Greenland ice sheet lost about 10 billion tons of ice per year from April 2003 to April 2012.
Subscribers, to watch the subscriber version of the video, first log in then click on Dreamland Subscriber-Only Video Podcast link.