Researchers from The Australian National University (ANU) have developed a method of freezing and storing light, an important step on the road to developing quantum computers. Most switches used in quantum computing experiments are made up of trapped ions or semiconductor particles, suspended in a state of quantum superposition. Photons, however, could interface much more efficiently with fiber optic networks, without the need for a way to translate the information between the qubit — the quantum-computing equivalent of a classical computer bit — and the computer’s network or interface.
read more

Because of the physical limitations of silicon-based circuitry, there is an upper limit to how powerful a modern computer can be made. In response to this, researchers have been looking into other mediums to build faster and more powerful computers from, including using quantum-based processors, and neurological chips based on human brain cells. Another promising idea, based on DNA, plans to utilize the otherwise naturally-occurring computer of genetics.
read more

Earth is a treasure trove of biodiversity, with over 8.7 million known species alive today, and that only represents an estimated 20 percent of all of the existing species that currently exist. But despite the sheer diversity of lifeforms, be it plant, animal, or microbe, we all share a common single-celled ancestor that started to diverge into new species 1.6 billion years ago. And because of that common ancestor, all species have a lot in common when it comes to our DNA: chimpanzees are nearly genetically identical to us; we share 69 percent of our genetic makeup with the otherwise oddball platypus; and we have even one-quarter of our code in common with rice.
read more

Researchers at RMIT University in Melbourne, Australia has developed a new method that can allow liquid metal to self-arrange its own shape, using external chemical inputs. The substance is made up of a highly-conductive liquid-metal core, surrounded by a film of semiconducting oxide skin, allowing the arrangement to be completely malleable, resembling the mimetic polyalloy used by the T-1000 from the Terminator movies.

The technique used to cause the metal to rearrange its shape involves changing the chemical makeup of the water that the metal is kept in, altering the pH levels and salt content of the solution. This prompts the skin surrounding the metal to change its shape, to the point where this change can cause the metal blob can propel itself.
read more